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Abstract. Using the sextic anharmonic oscillator ax2+ bx4+cx6 as a testing ground i t  is 
shown why the Hill determinant method has a limited range of applicability. A possible 
improvement is suggested and discussed. 

1. Introduction 

The Hill method is a non-perturbative approach to the eigenvalue problem which 
gained certain popularity in numerical calculations of the energies of various potentials, 
e.g. the quartic anharmonic oscillator (Biswas et a1 1971,1973), the confinement 
potentials (Chaudhuri et al 1987), the rotating harmonic oscillator (Singh et al 1982) 
and the Ax2/(1 +gx2) potential (Hautot 1981, Chaudhuri and Mukherjee 1983). On 
the other hand, it has been pointed out that this method has a limited domain of 
applicability in the plane of couplings (Znojil 1982, Chaudhuri and Mukherjee 1984) 
and doubt has been expressed as to whether the boundary condition +,,(x)+O as 
1x1 +CO is incorporated into the method or not (Flessas 1982, Chaudhuri 1983, Masson 
1983). Recently, Chaudhuri and Mukherjee (1984) and Chaudhuri (1983) found an 
explicit example (employing a so-called terminated solution) when the Hill method 
fails to produce the correct eigenvalues. From this fact we can draw the conclusion 
that the results of the Hill method should be checked to see whether or not the 
normalisation condition is violated, and whether an upper bound on +!I,, has been 
derived to this end. This, however, leaves the problem unsolved, at least from the 
point of view of practical evaluation of the eigenvalues, because imposing this condition 
may eliminate spurious levels but says nothing about how to find the correct ones. 
Naturally, such objections rather limit the appeal of this method. 

The aim of this paper is to reveal the underlying grounds and to attempt a remedy. 
We do not tackle the problem in its full complexity, but choose the sextic anharmonic 
oscillator as an illustrative example. We believe that it displays all of the salient 
features of the more general problem. 

The sextic anharmonic oscillator, i.e. the system described by the Hamiltonian 

H = p '1 2p + ax2 + bx4 + cx6 c > o  (1.1) 
can serve as a useful model in certain situations of physical interest, or simply as a 
test for various methods. It has been used in calculations of the vibrational spectra 
of molecules (Lister et al 1978) and in a description of the behaviour of a 3He-4He 
mixture and so-called metamagnets near the tricritical point (Araglo de Carvalho 
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1977). Reviews of the physical background can be found in Kincaid and Cohen (1975) 
and Stryjewski and Giordano (1977). Eigenvalues of ( 1 . 1 )  were also compared with 
the results of resummation of perturbation series in field theory (Caswell 1979, Sobel- 
man 1979). 

In the following section it is shown that the Hill method is not equivalent to the 
eigenvalue problem 

because the eigenvectors need not have finite form. This basic fact ensures that the 
method can either converge to the correct value, converge to an incorrect value or 
need not converge at all. It is demonstrated in 9 3 that the accuracy of the eigenvectors 
is not properly assessed or, to put it another way, the convergence of eigenvectors is 
not checked. This drawback provides a starting point for an improvement that ensures 
the convergence a priori and thus enlarges the range of applicability, which is the 
second objective of this paper. Comparison with other methods can be found in 9 4. 
The Hill method and its modification is finally presented in a more general context in 
0 5. 

HI,!J = E+ II(I,Il (1.2) 

2. Discussion of the Hill method 

The problem (equation (1.2)) has been attacked by several authors using different 
methods. It was probably Singh et a1 (1978) who first drew attention to the controversial 
features of the Hill method. They applied the continued fraction technique to represent 
the Green function of (1.2). In this approach, eigenvalues are obtained as poles of 
the Green function. It can, however, be shown that the continued fraction technique 
is equivalent to the Hill method. they also found conditions for the existence of 
terminated solutions, i.e. relations f , ( a ,  b, c, E )  = 0 under which $,, can be written as 
(polynomial) x exp( -ax4/4+ /3x2/2). The corresponding eigenvalues occur as the 
nodes of the determinant of an n x n tridiagonal matrix. 

Following Singh et al, (I, is written as 

(2.1) 
N = O  

U = 0 , l  according to the parity, and a new set of coupling constants is introduced: 

We convert the Schrodinger equation (1.2) to the recurrence relation 

with a- ,  = 0 and 
ANu,-,’+~ + BNuN + CNaN-1 = O  (2.3) 

AN = ( 2 N +  ~ + 2 ) ( 2 N +  U +  1 )  

CN = CY (7  - 4 N  - 2~ + 1 )  

BN = ~ + P ( 4 N + 2 u + l )  

E = 2 p E / h 2 .  
(2.4) 

Now, it is usually required that the infinite determinant 
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vanishes in order ‘to ensure a non-trivial solution’ and it is claimed that this condition 
can be fulfilled for specific values of the parameter E. This is, however, a misunderstand- 
ing, because non-trivial solutions exist for all values of E ,  as was pointed out by Znojil 
(1982). The problem lies in confusing two different norms. 

The above-mentioned requirement must be interpreted in the algebraic sense 

and it implies that the norm Z“,=, laN/’ must be used, and not the physically relevant 
norm l+,,l’ dx as is tacitly assumed. But the former norm imposes no additional 
restriction on E. From this point of view the vanishing of the Hill determinant (2.5) 
is not well founded and one should not be surprised if it admits a non-physical result. 

The standard technique for evaluation of roots of (2.5) is based on the belief that 
roots of successive minors of ( 2 . 5 )  tend toward the energy eigenvalues of (1.2). We 
introduce the following example that shows that this belief is not justified. 

Drawing on investigations by Singh et a1 (1978), Znojil (1982) and Chaudhuri and 
Mukherjee (1984), we infer that the applicability of the method is limited to positive 
values of the subdominant coupling constant b. On the other hand, a continuous 
change of b to -b must produce a smooth change in energy E,, = E,,(b). For the sake 
of simplicity the harmonic term is dropped in our example, i.e. a = 0. Figure l ( a )  
shows the convergence of the Hill method at a point where it works well. Halving 6 
(figure l ( b ) )  the first inconvenience is encountered, namely the first few even 
approximants have no real roots. This absence of real roots is not surprising in view 
of the non-symmetry of the matrix (2.5). Now, as b approaches 0 the number of even 
approximants without real roots increases rapidly and the method becomes inefficient, 
because besides this the convergence of the odd approximants also slows down 
conspicuously. In the case of b = 0 the even approximants have no real roots, while 
the odd ones have only one real root, which remains identically zero. Going to negative 
values of b (figure l ( c ) )  one can observe behaviour similar to that in figure l ( b ) :  the 
first few even approximants are without real roots and since N 2 Nmin(b), there is 
convergence to a certain value, which, however, is not the correct eigenvalue. Nmin 
decreases with decreasing b (cf figures l ( c )  and l ( d ) ) .  

This investigation revealed two facts which are worthy of mention. First, we note 
the symmetry relation that holds between approximants: 

DN(a, -b, C , - E ) = ( - l ) N D N ( a ,  b, C, E )  N = 1 , 2 , .  . . (2.7) 

where DN denotes the N x  N minor of ( 2 . 5 ) .  It can be easily proved using the 
recurrence relation 

DN = BN-IDN-I-AN-zCN-IDN-,.  (2.8) 

Indeed, because b + -b, E + - E  implies AN + AN, B N  + - B N ,  C N  + C N ,  and DI + 

-D,, Dz+ D,, one immediately arrives at (2.7). This symmetry causes that the 
approximants with b < 0 converge to -E,, (lbl) instead of to E,,( b ) .  

Second, we note the dependence of the number of real roots on b. This dependence 
is plotted in figure 2. If we choose an N, e.g. N = 4, then D4(b)  has no real root 
provided that 1 bl< bo,, has two real roots only if bo* < I bl< b,, and has four real roots 
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Figure 1. The convergence of the Hill method for V ( x )  = b x 4 + x 6 / 5 .  Figures ( a ) ,  ( b ) ,  (c), 
( d )  show the convergence for different values of b, i.e. 6 = O S ,  0.25, --0.25 and -0.5, 
respectively. Figures ( c )  and ( d )  demonstrate that the Hill method can converge to an 
incorrect value. 
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Figure 2. The dependence of the number of roots of Hill approximants on the subdominant 
coupling constant b. (a)  shows the dependence of even approximants, and ( b )  the same 
for odd approximants for V ( x )  = b x 4 + x 6 / 5  and even parity. 

if Ibl> 624. Alternatively, choosing some 6, we can find the corresponding N which 
ensures that D M ( 6 ) ,  M > N, has the required number of real roots. The even 
approximants (figure 2(a ) )  and the odd approximants (figure 2 ( b ) )  are plotted separ- 
ately. One should only keep in mind that the odd determinants are polynomials of 
odd degree in energy and thus they have always at least one real root. This fact also 
explains the asymmetry between the even and odd approximants in figures l (b ) ,  ( c ) .  
This asymmetry disappears when computing an excited state of the same parity. 
According to this author’s experience it is always the greatest roots that cease to be 
real as I bl increases ( N  being kept fixed), while the lower ones remain real and stable. 

The above-mentioned behaviour in the case when b = 0 is now obvious in view of 
(2.8) and figure 2. More precisely, B N - ,  = E, A N - ~ ~ N - I  < 0 ( N  = 3,4 ,  . .  .), D, = E, 
D2 = ~ ~ + 6 a (  1 +4u)  > 0, and hence 

D2,  > 0 and DZm+,  = 0 if E = 0. 

If we do not insist on the choice p = - b ( 2 ~ / h 2 c ) ” ’ / 2  and let p be a free parameter, 
the relation (2.7) is still valid and now becomes 

D N ( ~ ,  -b, C ,  -P, - E ) = ( - l ) N D , ( a ,  b, C ,  p, E )  (2.9) 

(cf Znojil 1986). In  this case we have a four-term recurrence instead of (2.3). Killing- 
beck (1986) showed that this recurrence relation produces the true and false energies 
as well, when one varies the parameter p. He was also able to find values of (x‘ )  with 
minimal additional effort (see Killingbeck 1985) and thus to distinguish between the 
two cases, because spurious energies yield negative values for (x’) .  

Naturally, the question that now arises is whether we can discover a criterion 
(different from evaluating (x’ ) )  that can distinguish between spurious and correct 
eigenvalues. Previous investigations (Flessas 1982, Chaudhuri 1983) suggest that we 
should analyse the convergence of the corresponding eigenvectors. 
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3. Improvement of the method 

It is a common experience that the divergent solution is always present to some degree 
in a numerical solution of an  eigenvector when solving (1.2) in the differential equation 
formulation. The quality of a given result depends on the degree to which this 
component is suppressed. The Hill method shows similar behaviour, i.e. deterioration 
of convergence, as may be seen from table 1. 

Table 1. The deterioration of the convergence of eigenvectors evaluated using the Hill 
method. The left column shows the correct results, while the right one the results for an 
energy very close to the exact one. The potential used is V ( x )  = 2x4+ x6/5. 

N n,bf/n,-,(Eo= 1.384633 33837) a , / a , - , ( E  = 1.3846333408) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0.4257 
0.1002 
0.0027 

-0.0404 
-0.0629 
-0.0758 
-0.0836 
-0.0883 
-0.0913 
-0.0930 
-0.0941 
-0.0941 

0.4257 
0.1002 
0.0027 

-0.0404 
-0.0629 
-0.0760 
-0.0825 
-0.0930 
-0.0749 
-0.1603 

0.0275 
1.1187 

From this observation it follows that we have to carry out a more thorough analysis 
in order to obtain additional information about the ratio U ~ / L Z ~ - ~ .  The determinantal 
formula of Singh et ul (1978) 

p o ,  Ao, I 

makes it possible to estimate the asymptotic behaviour of ah, and indicates that u N / u N - ,  
must be negative in order to fulfil the physical requirement 1 1  I,$, /I < 00. Alternating signs 
of uN is a necessary condition, which allows for cancellation of exponents in (2.1). It 
would be desirable to know the asymptotic form of this ratio. In particular, it would 
enable us to check the convergence at each step. To this end u ~ / u ~ - ~  is expressed 
in a more convenient form 

I 1, 

. (3.2) 

d N - I  I 
The determinant on the RHS of (3.1) then equals the product d o . .  . dN- . l  and 

U N  d N - I  

U N - l  A N - I '  
-- - -- (3.3) 
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The quantities dN and d N - ,  are related by the recurrence 

d N  = B N  - A N - i C N / d N - I  do=  Bo.  (3.4) 

It is only a matter of convenience to substitute C N f N A N - 1  for d N e I  and write 

a N / a N - 1  = - c N f N  (3.5) 

l / f N  + A N C N + l f N + I  = B N *  (3.6) 

Now, it is supposed that the mappings f N  + f N t l  are almost N independent in the 
asymptotic region and their fixed points are searched for. Keeping only leading-order 
terms, the dominant part of the dependencef=f( N) is obtained. Proceeding this way 
ANCN+,  = - 1 6 a N 3 + 0 (  N’), BN -O( N )  and can therefore be omitted in this step. 
We assume 

and 

f N  =PO/N” (3.7) 
where cpo and v are to be adjusted, and substitute it into (3.6). Two possible solutions 
are obtained: 

cpo = L/4a 1’2 where L = * l .  (3.8) y = l  2 

Going one step further, the first correction 

fN = ( c p o + c ~ ~ / ~ ” ’ ) / ~ ~ ’ ~  

y ’ = f  -@/8a.  

is found to be 

This suggests that the general ansatz should be of the form 

1 cpl 
f N = p C N ” Z .  I =o 

(3.9) 

(3.10) 

(3.11) 

Inserting it into (3.6) and carrying out the comparison of the independent powers of 
N yields 

c p 2 =  L ( p 2 / a  + y-3 -6u) /32a1”  

9 3  = - [ E  +p3/2 f f  +4p2+pi  y - 3  -4u)]/32a 

cp4= ~ [ 3 p ~ / 1 6 ~ ~ ~ + 2 2 p ~ / a + p ~ ( 3 ~ - 5 - 1 0 ~ ) / 8 a  

+ ( 3 y 2 -  l O y - 2 0 y ~ + 1 2 0 ~ - 5 ) / 1 6 ] / 3 2 a ~ ’ ~  

95 = - [ p 3 ( ~ - 6 u  + 2 ) / 8 a  + ( p 2 +  E / ~ ) ( Y - ~ u )  

+p(y2 -3y -6y~+30~+43) /4 ] /32a  

(3.12) 

and so on. 
The sign ambiguity must be treated in conjunction with the already mentioned 

requirement 1) <CO. Because CN < 0 for sufficiently large N,  (3 .5)  implies that fN 
must be negative in the asymptotic region. I t  fixes 1 to be - 1 ;  the second fixed point 
(i.e. L = 1 )  is not physically acceptable. 

The transcendental equation (3.5) with (3.1 1 )  and (3.12) thus replaces the algebraic 
prescription a N  = O  of the Hill method. Solving it, one gets not only eigenvalues but 
also physically acceptable eigenvectors with the same level of precision. Let us now 
turn our attention to tests of practicability. 
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4. Discussion of results 

We begin with a comparison of the standard Hill method and  the modified version 
(3.5) in the region where the former works. The precision of results found by means 
of (3.5) obviously depends on the number of terms in (3.11) taken into account. This 
is indicated by the superscript k :  

From table 2 it is clearly seen that (3.5) is better than the Hill method and that the 
convergence improves with increasing k. The picture looks similar for the case of 
excited states (table 3). Figure 3 demonstrates that the new version gives correct results 
in the vicinity of b = 0, which was the stumbling block of the original method. Table 
4 repeats results of Caswell (1979) for the potential V ( x )  = - x 2 / 2 +  cx'. Comparison 
confirms the loss of precision for small values of c in the results obtained by resumma- 
tion of the perturbation series (his results are measured with respect to the minimum 
of the potential well and the energies of table 4 are twice his energies). 

Besides this, the modification proposed substantially extends the region of couplings 
in which a required precision of eigenenergies and eigenvectors may be achieved. It 
treats the corresponding wavefunction on  the same level of accuracy as the energy. It 
practically removes the threat of overflow (IDN/DN-,I = N3'2)  because it needs only 
the ratio uN/uN-, = d N - 1 ,  which is evaluated recursively. 

The validity of the fixed point approximation is not limited to the sextic anharmonic 
oscillator. It provides, at least in principle, a quite general tool for finding the 
accumulation points OffN + f N + ,  mappings and the dependence on N in the physically 
acceptable one. It can be done for a given type of potential once and  forever (if a 
greater number of terms in (3.11) is desired, symbolic language manipulations are 
advisable). 

Table 2. The dependence of the ground-state energy obtained by the improved Hill method 
on N and k (see (4.1)) for V(x)=2x4+x6/5.  

N Hill k=O k = l  k = 2  k = 3  k = 4  k = 5  

5 1.384638724 1.384629676 1.384636021 1.384631 682 1.384632982 1.384631 896 1.384633499 
7 1.384633 565 1.384633 222 1.384633412 1.384633299 1.384633 328 1.384633 308 1.384633 333 
8 1.384633 280 1.384633365 1.384633322 1.384633 346 1.384633341 1.384633 344 1.384633340 

I O  1.384633 333 1.384633 340 1.348 633 337 1.384633 339 1.384633 339 1.384633 339 1.384633 339 
11 1.384633 340 1.384633 338 1.384633 339 1.384633 338 1.384633 338 1.384633 338 1.384633 338 

Table 3. The dependence of E ,  obtained by the improved Hill method on N and k (see 
(4.1))  for V(x) = 2x4+x6/5. 

N Hill k = O  k = l  k = 2  k = 3  k = 4  k = 5  
~~ ~ 

I 5  36.547 158 03 36.525 255 1 1  36.532 098 26 36.529 229 01 36.527 912 60 36.528 447 24 36.528 306 70 
20 36.527 934 48 36.528 757 47 36.528 542 48 36.528 620 07 36.528 651 03 36.528 640 63 36.528 643 17 
25 36.528 668 09 36.528 628 47 36.528 637 46 36.528 634 56 36.528 633 49 36.528 633 84 36.528 633 7 1  
30 36.528 632 07 36.528 634 41 36.528 633 9 4  36.528 634 08 36.528 634 13 36.528 634 I 1  36.528 634 1 1  
31 36.528 635 28 36.528 633 92 36.528 634 19 36.528 634 11 36.528 634 08 36.528 634 09 36.528 634 09 
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-0.4 -0.2 

Figure 3. The smooth dependence E,  = Eo( b )  in the vicinity of b = 0 for V( x )  = bx4+ xb/5. 
The energy is evaluated using the improved Hill method (3.5). 

Table 4. Energies E ,  and E ,  for V(x) = -x2/2+ cx6. 

C EO 

100 
10 

1 
0.1 
0.05 
0.02 
0.01 
0.007 
0.005 

4.222 916 4 
2.273 357 8 
1.090 758 9 
0.229 084 04 

-0.044 241 316 
-0.515 877 88 
-1.090331 6 
-1.525 984 3 
-2.055 248 9 

16.124 304 
8.832 790 6 
4.540 610 0 
1.737 951 9 
1.006 303 7 
0.000 000 0 

-0.884 562 51 
- 1.423 602 0 
-2.01 1 235 6 

The method is, however, not fully devoid of unpleasant features. First, there is a 
question of the optimal cut-off k. It is always possible to find a minimal cut-off kmi, 
such that the equation (3.5) has a root in the vicinity of the correct value, while for 
k < kmin it need not have any root. For given values of couplings a,  b, c it is difficult 
to guess kmi, in advance. Alternatively, we can find combinations of a, b, c such that 
more than the first few corrections (i.e. five or so) are necessary. 

Second, in the domain of applicability of the Hill method, the correct value lies 
between two successive roots E‘,N-” and E‘,”, where = 0 ,  M = N - 1, N. 
The ratio a N / a N . - ,  is negative only in this interval, which may be very small for 
sufficiently large N and therefore the root could not be easily detectable by purely 
numerical means. In that case it is probably better to find ELN-’’ and E‘,” for a small 
N in order to estimate the value roughly, and then to switch to the new algorithm 
(3.5). In  particular, terminated solutions, which represent the ultimate case in this 
respect, must be dealt with separately. These two points, however, do not represent 
very serious impediments. 

The values in tables 2-4 were checked by two other methods. The first one has a 
variational character, namely the successive approximants provide upper bounds on 
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eigenenergies. I t  is nothing but the prescription 

det( Z,,,,) = 0 (4.2) 

where (Z,,,,) is H - E in the harmonic oscillator basis. This method is rather straightfor- 
ward, but its convergence is slow. It is worth noting that this method can be modified 
in the same way (Znojil and Tater 1986) as the Hill method is modified in this paper, 
but the series analogous to ( 3 . 1 1 )  is in integral powers of N-"4. 

The second method represents a natural generalisation of the method described in 
Znojil et al (1985), i.e. backward-run seven-term recurrences, which arise from (1.2) 
by writing I) in the harmonic oscillator basis. 

We have also done tests in order to compare the energies reported by other authors 
(Biswas er a1 1971, 1973, Hioe e? al 1976) and no difference has been found. On the 
other hand, the method proposed by Ginsburg (1982) leads to the same results as the 
Hill method when the correct asymptotics are used, i.e. exp( -ax4/4+ px2/2) is used 
as his weight function. This is not surprising, because one then gets the same recurrence 
relation (2.3), and requiring a N ( E )  = O  and choosing a N - ,  = K ,  where K is a scaling 
constant, a, can be written as 

( - 1 ) N K  
a, = 

A I . .  . A N - ]  
C N - I ,  BN-I 

(4.3) 

It remains now to fulfil Aoal + Boao = 0, i.e. the condition that determines the energy. 
Insertion of (4.3) and a similar expression for a ,  into it yields 

= O  ( -  1 ) N D N  

A o . .  . AN- I  (4.4) 

which proves the above-mentioned assertion. 

5. The Hill method revisited 

Having investigated the Hill method and its improvement, it is now desirable to draw 
some general features that would be useful in other cases, i.e. to have an indication 
whether they are susceptible to an analogous modification. First, we are going to 
demonstrate that the Hill method corresponds to a particular choice of free parameter, 
which has no physical background. 

To this end we re-express the coefficients a N  in a different form. This will be done 
in three steps. First of all we split the matrix in (2.6) into three factors 

Bo, Ao, AOfI 7 

(C l ,  B , ,  A , , )  . . .  =(Iy 1 ,  A I f 2 , ) ( l ' t f l  . . .  
. . .  )( C t i ,  . . .  1 , ) .  

(5 .1)  

Again, the quantities are related by the recurrence 
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It is important to realise now that the splitting ( 5 . 1 )  is not unique. Indeed, we have 
a whole one-parametric family, because fo( E )  can be chosen arbitrarily, regardless of 
whether E has a physical value or not. 

The next step consists in substituting a new auxiliary vector ( wo,  w , ,  . . .) for 
(a09 a , ,  . . .): 

WO = a o / f o  C N a N  - 1  + A N  / f N  = w N  N = l , 2 ,  . . .  . (5.3) 

WO = ao/fo W N - ~ S A N - L ~ N W N  = O  N = 1 , 2 , .  . . (5.4) 

This reduces the three-term recurrences (2.3) to 

fully equivalent to (2.3). The coefficient w N  can be expressed as 

(5.5) 

In the final step we complete the re-expression of a N  as a function of f o ,  . . . , f N  

and a,. Combining (5.3) and (5.5) repeatedly we have 

(5.6) 

where II:=, = 1 for m > n. 
After these preparatory manipulations we are ready to discuss the Hill method. 

The requirement aN = O  can be fulfilled only by the choice l/fo=O, as follows from 
(5.6). Once we start with some fo, allf, ( N > 0 )  are determined by (5.2), but there 
is no guarantee that we arrive at the accumulation point that ensures correct asymptotic 
behaviour of the wavefunction (cf 9 2).  Paralleling Znojil(l983) we see that we should 
start with f N  where N = CO in the physical fixed point and go backward to fo. 

It is worth noting here that Masson (1983) showed in the continued fraction 
formulation that the Hill method applied to the rotating harmonic oscillator can give 
physical results, but the continued fractions must be analytically continued onto the 
second sheet. This is carried out by replacing the tail of the continued fraction by an 
approximately correct tail. Such a modification, though theoretically illuminating, is 
of practical interest only under certain conditions that are generally hard to fulfil. 
Masson actually used the fixed point argumentation, but stayed with the forward- 
running implementation. 

Hautot (1986) showed explicitly what happens in the case of the sextic anharmonic 
oscillator when we change b + -b. If b > 0, the solution of recurrences (2.3) represents 
a dominated solution, while for b < 0 the solution becomes dominant and the corre- 
sponding wavefunction is not square integrable. His modification of the algorithm 
consists in letting CY and /3 be free parameters (similar to Killingbeck), applying the 
generalised Miller algorithm to the recurrences for various values of CY and p and then 
selecting the optimal values cyoptr Po,, . This ensures that one arrives at a true eigenvalue, 
but the preparatory procedure need not be convenient for automatic computation. 
Our approach avoids this procedure, though the convergence need not be the optimal 
one. 

Our improvement goes further. We do not start with fE, but with a finite N 
(depending on the number of terms in (3.11) taken into account, i.e. on k in (4.1)) 
thus making use of the knowledge of the asymptotic behaviour of f N .  It fixes the free 
parameter fo due to (5.21, obviously in a way different from the Hill method. 

Finally, the last question that remains to be answered is whether there is a quantity 
sensitive to the applicability of the Hill method. To answer this question positively it 
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is necessary to distinguish between two results. We leave the symbol a N / a N - ,  for the 
Hill approach and denote by T N  the same ratio obtained from the backward-run 
recurrences (equivalent to (2.3)) 

C N / T N + B N + A N T N + I = O  N = 1,2,  . . . (5.7) 

f N  = a N / a N - l -  T N .  (5.8) 

initialised at infinity. These two quantities have a non-vanishing difference 

Indeed, expressing B N  from (2.3) and from (5.7) and comparing them we have 

C N  U N - I  
f N + 1  =-- t N .  

ANTN a~ 

Extending (5.7) to N = 0 in a natural way we can write 

(5.9) 

and thus 

t i  = C,/A,Ta. (5.11) 

Combining (5.9) and (5.11) yields 

(5.12) 

which is a quantity accessible to more thorough analysis (cf Znojil 1982). If f N  vanishes 
the Hill method gives correct results. Otherwise it can be used for testing in a similar 
way as that in which the oscillation theorem is used. 
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